Gauss-Bonnet dark energy

Abstract
We propose the Gauss-Bonnet dark energy model inspired by string/M-theory where standard gravity with scalar contains additional scalar-dependent coupling with a Gauss-Bonnet invariant. It is demonstrated that the effective phantom (or quintessence) phase of the late universe may occur in the presence of such a term when the scalar is phantom or for nonzero potential (for canonical scalar). However, with the increase of the curvature, the Gauss-Bonnet term may become dominant so that the phantom phase is transient and the w=1 barrier may be passed. Hence, the current acceleration of the universe may be caused by a mixture of scalar phantom and/or potential or stringy effects. It is remarkable that scalar-Gauss-Bonnet coupling acts against the big rip occurrence also in phantom cosmology.