Cardiovascular-Respiratory Actions of Mephentermine in Mitral Stenosis and Its Effects on Pulmonary Function in Chronic Pulmonary Emphysema
- 1 November 1961
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 9 (6) , 1185-1195
- https://doi.org/10.1161/01.res.9.6.1185
Abstract
Mephentermine increased maximum breathing capacity in emphysema patients due to partial relief of existing bronehospasm. Small variations occurred in tidal volume, arterial-blood saturation, O2 uptake and CO2 removal per liter ventilation, and in respiratory quotient. There was an increase in expiratory minute volume, alveolar ventilation, frequency of respiration, O2 consumption, CO2 elimination, and arterial-blood pH; a decrease occurred in physiological dead space, physiological dead space/tidal volume ratio, and CO2 content and tension in arterial blood. These changes were marked in normal individuals and in mitral stenosis patients, in contrast to the minimal effects obtained in emphysema cases. Bronehodilatation in emphysema, reduction of the physiological dead space and physiological dead space/tidal volume ratio, and changes in both direction in arterial-blood saturation as well as circulatory effects suggest that mephentermine affects the ventilation-perfusion relationships throughout the lung. The disproportionate increase in expiratory minute volume and frequency of respiration, while arterial-blood findings showed a significant decrease in CO2 tension and a significant increase in pH, suggests an important central effect. In normal and in mitral stenosis patients, mephentermine produced an increase in heart rate, a decrease in mean right-atrial pressure, and an increase in cardiac output as a result of myocardial stimulation. Changes in pulmonary-artery pressure were variable. Pulmonary arteriolar resistance decreased in all three normal controls and in the majority of mitral stenosis cases, while wedge pressure changed very slightly. These changes are interpreted as pulmonary vaso-dilatation. Systemic pressure increased, while total systemic resistance decreased or remained essentially unchanged. Arteriovenous O2 difference decreased in most eases with increased cardiac output, and vice versa. Increased cardiac output, associated with unchanged or falling systemic resistances and decreased arteriovenous O2 difference, suggests vasodilatation with, increased peripheral blood flow. The fact that systemic resistance increases slightly in some cases must mean that vasocon-striction with decreased peripheral blood flow occurred in other vascular areas as a probable compensatory reaction. These effects led to an increase in arteriovenous O2 difference and a reduction in cardiac output.Keywords
This publication has 16 references indexed in Scilit:
- The Effect of Xanthin Derivatives: Ro 1-8239, Aminophylline and Dihydroxy Theophylline on Chronic Pulmonary DiseaseDiseases of the Chest, 1960
- THE CARDIOVASCULAR-RESPIRATORY EFFECTS OF A NEW XANTHINE DERIVATIVE IN CHRONIC PULMONARY EMPHYSEMA AND IN MITRAL STENOSIS°The Lancet Healthy Longevity, 1960
- ACTION OF MEPHENTERMINE WHEN INJECTED INTO ISOLATED HEAD OR CORONARY CIRCULATIONSThe Lancet Healthy Longevity, 1959
- A CLINICAL EVALUATION OF MEPHENTERMINE SULFATE AND PENTYLENETETRAZOL AS STIMULANT THERAPY FOR THE GERIATRIC PATIENTJournal of the American Geriatrics Society, 1958
- THE EFFECT OF ACETYLCHOLINE ON PULMONARY VASCULAR RESISTANCE AND LEFT ATRIAL PRESSURE IN MITRAL STENOSISHeart, 1957
- Pharmacological Properties of Mephentermine, a Sympathomimetic Amine*Journal of the American Pharmaceutical Association (Scientific ed.), 1954
- A SURVEY OF SPINAL ANESTHESIA FROM 1949 THROUGH 1952Anesthesiology, 1954
- Mephentermine—An effective pressor amineAmerican Heart Journal, 1952
- AN IMPROVED CLINICAL METHOD FOR THE ESTIMATION OF DISTURBANCES OF THE ACID-BASE BALANCE OF HUMAN BLOODMedicine, 1948
- Ueber die Lungenathmung1Skandinavisches Archiv Für Physiologie, 1891