Dendritic Cells Retrovirally Transduced with a Model Antigen Gene Are Therapeutically Effective against Established Pulmonary Metastases
Open Access
- 20 October 1997
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 186 (8) , 1213-1221
- https://doi.org/10.1084/jem.186.8.1213
Abstract
Dendritic cells (DCs) are bone marrow–derived leukocytes that function as potent antigen presenting cells capable of initiating T cell–dependent responses from quiescent lymphocytes. DC pulsed with tumor-associated antigen (TAA) peptide or protein have recently been demonstrated to elicit antigen-specific protective antitumor immunity in a number of murine models. Transduction of DCs with TAA genes may allow stable, prolonged antigen expression as well as the potential for presentation of multiple, or unidentified, epitopes in association with major histocompatibility complex class I and/or class II molecules. To evaluate the potential efficacy of retrovirally transduced DCs, bone marrow cells harvested from BALB/c mice were transduced with either a model antigen gene encoding β-galactosidase (β-gal) or a control gene encoding rat HER-2/neu (Neu) by coculture with irradiated ecotropic retroviral producer lines. Bone marrow cells were differentiated into DC in vitro using granulocyte/macrophage colony-stimulating factor and interleukin-4. After 7 d in culture, cells were 45–78% double positive for DC phenotypic cell surface markers by FACS® analysis, and DC transduced with β-gal were 41–72% positive for β-gal expression by X-gal staining. In addition, coculture of β-gal transduced DC with a β-gal–specific T cell line (CTLx) resulted in the production of large amounts of interferon-γ, demonstrating that transduced DCs could process and present endogenously expressed β-gal. DC transduced with β-gal and control rat HER-2/neu were then used to treat 3-d lung metastases in mice bearing an experimental murine tumor CT26.CL25, expressing the model antigen, β-gal. Treatment with β-gal–transduced DC significantly reduced the number of pulmonary metastatic nodules compared with treatment with Hank9s balanced salt solution or DCs transduced with rat HER-2/neu. In addition, immunization with β-gal–transduced DCs resulted in the generation of antigen-specific cytotoxic T lymphocytes (CTLs), which were significantly more reactive against relevant tumor targets than CTLs generated from mice immunized with DCs pulsed with the Ld-restricted β-gal peptide. The results observed in this rapidly lethal tumor model suggest that DCs transduced with TAA may be a useful treatment modality in tumor immunotherapy.Keywords
This publication has 31 references indexed in Scilit:
- Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines.The Journal of Experimental Medicine, 1996
- Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines.The Journal of Experimental Medicine, 1996
- Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo.The Journal of Experimental Medicine, 1996
- Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity.The Journal of Experimental Medicine, 1996
- Anti-Tumor Activity of Cytotoxic T Lymphocytes Elicited with Recombinant and Synthetic Forms of a Model Tumor-Associated AntigenJournal of Immunotherapy, 1995
- The Biochemistry and Cell Biology of Antigen Processing and PresentationAnnual Review of Immunology, 1993
- Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.The Journal of Experimental Medicine, 1992
- GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cellsNature, 1992
- The Dendritic Cell System and its Role in ImmunogenicityAnnual Review of Immunology, 1991
- Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.The Journal of Experimental Medicine, 1987