A model for pulsed laser melting of graphite

Abstract
A model for laser melting of carbon at high temperatures to form liquid carbon has been developed. This model is solved numerically using experimental data from laser irradiation studies in graphite consistent with a melting temperature for graphite of 4300 K. The parameters for high‐temperature graphite are based on the extension of previously measured thermal properties into the high‐temperature regime. A simple classical free electron gas model is used to calculate the properties of liquid carbon. There is very good agreement between the model calculation and experimental results for laser pulse fluences below 2.0 J/cm2. Modifications to the model for larger laser pulse fluences are discussed.