Changes of Cerebral Energy Metabolism and Lipid Peroxidation in Rats Leading to Mitochondrial Dysfunction After Diffuse Brain Injury
- 1 October 1999
- journal article
- research article
- Published by Mary Ann Liebert Inc in Journal of Neurotrauma
- Vol. 16 (10) , 903-913
- https://doi.org/10.1089/neu.1999.16.903
Abstract
The effect of mild closed head trauma, induced by the weight-drop method (450 g from a 1-m height), on lipid peroxidation and energy metabolism of brain tissue was determined at various times after cerebral injury in spontaneously breathing rats (1, 10, 30 minutes and 2, 6, 15, 24, 48, and 120 hours). Animals were continuously monitored for the evaluation of blood pressure, blood gases, heart rate, and intracranial pressure. Analysis of malondialdehyde (MDA) as an index of lipid peroxidation, ascorbic acid, high-energy phosphates, nicotinic coenzymes, oxypurines, and nucleosides was performed by high-performance liquid chromatography (HPLC) on neutralized perchloric acid extract of the whole brain. Data showed that MDA, undetectable in control, sham-operated rats, was already present within 1 minute of trauma (1.77 nmol/g wet weight; SD = 0.29) and reached maximal values by 2 hours (72.26 nmol/g w.w.; SD = 11.26), showing a progressive slow decrease thereafter. In contrast, ATP, GTP, and nicotinic coenzyme (NAD and NADP) concentrations showed significant reduction only by the second hour postinjury. Maximal decrease of the ATP and GTP concentrations were seen at 6 hours postinjury, whereas NAD and NADP concentrations showed maximum decline by 15 hours. Values recorded in mechanically ventilated rats did not differ significantly from those obtained in spontaneously breathing animals. These findings, supported by the absence of blood gas and blood pressure changes in the spontaneously breathing rats, strongly support the premise that biochemical changes (primarily lipid peroxidation) are not caused by secondary ischemic-hypoxic phenomena but rather are triggered by these forces acting on the brain at the time of impact. In addition, these results suggest that depression of energy metabolism might be caused by peroxidation of the mitochondrial membrane with a consequent alteration of the main mitochondrial function—that is, the energy supply.Keywords
This publication has 20 references indexed in Scilit:
- Changes of Biological Reducing Activity in Rat Brain following Closed Head Injury: A Cyclic Voltammetry Study in Normal and Heat-Acclimated RatsJournal of Cerebral Blood Flow & Metabolism, 1997
- Pyridine nucleotide hydrolysis and interconversion in rat hepatocytes during oxidative stressBiochemical Pharmacology, 1995
- A new model of diffuse brain injury in ratsJournal of Neurosurgery, 1994
- A new model of diffuse brain injury in ratsJournal of Neurosurgery, 1994
- A controlled cortical impact model of traumatic brain injury in the ratJournal of Neuroscience Methods, 1991
- Diffuse axonal injury in non-missile head injury.Journal of Neurology, Neurosurgery & Psychiatry, 1991
- Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterationsBrain Research, 1989
- Controlled Cortical Impact: A New Experimental Brain Injury ModelJournal of Neurotrauma, 1988
- A fluid percussion model of experimental brain injury in the ratJournal of Neurosurgery, 1987
- Critical early metabolic changes associated with myocardial recovery or failure after total ischaemia in the rat heartBasic Research in Cardiology, 1987