Abstract
Proper orthogonal decomposition (POD) is studied in an effort to increase its applicability as a modal analysis tool. A modification is proposed to make better use of spatial resolution and to accommodate arbitrary spacing in the discretization. The theory for this modification is rooted in the discrete approximation of the integral orthogonality condition for continuous normal modes. The modified POD is applied to a finite element beam and an experimental beam sensed with accelerometers, and the resulting proper orthogonal modes (POMs) are compared to the theoretical modes of the beam. The POMs are used as a basis for decomposing the signal ensemble into proper modal coordinates. The proper modal coordinates are used to evaluate the POMs and to match modes with modal frequencies and damping.