The effect of stratospheric aerosols on the earth's monthly zonal radiation balance is investigated using a model layer consisting of 75% H2SO4, which is the primary constituent of the background aerosol layer. The reduction in solar energy absorbed by the earth-atmosphere system is determined through the albedo sensitivity, defined here as the change in albedo per unit mid-visible optical depth of the aerosol layer. The optically thin approximation is used in conjunction with the Henyey-Greenstein phase function for scattering to simplify computations. Satellite-derived planetary albedos are used as the frame of reference about which the change in albedo is computed. An infrared radiative transfer model is used to estimate the increased greenhouse effect attributed to the aerosol layer. The infrared heating tends to compensate for the albedo effect in altering the radiation balance. The results indicate that the dominant influence of the thin model stratospheric aerosol layer is an increased ref... Abstract The effect of stratospheric aerosols on the earth's monthly zonal radiation balance is investigated using a model layer consisting of 75% H2SO4, which is the primary constituent of the background aerosol layer. The reduction in solar energy absorbed by the earth-atmosphere system is determined through the albedo sensitivity, defined here as the change in albedo per unit mid-visible optical depth of the aerosol layer. The optically thin approximation is used in conjunction with the Henyey-Greenstein phase function for scattering to simplify computations. Satellite-derived planetary albedos are used as the frame of reference about which the change in albedo is computed. An infrared radiative transfer model is used to estimate the increased greenhouse effect attributed to the aerosol layer. The infrared heating tends to compensate for the albedo effect in altering the radiation balance. The results indicate that the dominant influence of the thin model stratospheric aerosol layer is an increased ref...