The discrete polynomial-phase transform

Abstract
The discrete polynomial-phase transform (DPT) is a new tool for analyzing constant-amplitude polynomial-phase signals. The main properties of the DPT are its ability to identify the degree of the phase polynomial and to estimate its coefficients. The transform is robust to deviations from the ideal signal model, such as slowly-varying amplitude, additive noise and nonpolynomial phase. The authors define the DPT, derive its basic properties, and use it to develop computationally efficient estimation and detection algorithms. A statistical accuracy analysis of the estimated parameters is also presented.<>

This publication has 11 references indexed in Scilit: