Theory and simulation of crystal growth

Abstract
Crystal growth phenomena are discussed with special reference to growth from vapour. The basic concepts of crystal growth are recalled, including the different growth modes, the dependence of the growth rate on disequilibrium and temperature, and the atomic processes relevant for growth. The methods used in crystal growth simulations are reviewed, with special reference to kinetic Monte Carlo methods. The roughness of growing surfaces, and the roughness properties of the discrete and continuum growth models (the latter being described via stochastic differential equations) are discussed, together with the special phenomena occurring in the vicinity of the roughening temperature. A number of simulations based on the six-vertex model and on kinetic counterparts of the BCSOS model are reviewed. Finally, the instabilities arising during growth are considered, including a discussion of phenomena such as dendritic growth and ramified cluster growth and reviewing the recent, extensive studies concerning unstable MBE growth.