Precession and Motional Slowing of Spin Evolution in a High Mobility Two-Dimensional Electron Gas

Abstract
Optical spin-dynamic measurements in a high-mobility n-doped GaAs/AlGaAs quantum well show oscillatory evolution at 1.8 K consistent with a quasi-collision-free D’yakonov-Perel’-Kachorovskii regime. Above 5 K evolution becomes exponential as expected for collision-dominated spin dynamics. Momentum scattering times extracted from Hall mobility and Monte Carlo simulation of spin polarization agree at 1.8 K but diverge at higher temperatures, indicating the importance of electron-electron scattering and an intrinsic upper limit for the spin-relaxation rate.