Intensity and frequency characteristics of pacinian corpuscles. I. Action potentials
- 1 April 1984
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 51 (4) , 793-811
- https://doi.org/10.1152/jn.1984.51.4.793
Abstract
The mechanisms by which pacinian corpuscles, isolated from cat mesentery, transduce mechanical stimuli have been measured for directly applied sinusoidal deformations. Stimulus-response relationships were measured as follows: intensity characteristics, which relate the receptor-potential magnitude or the neural firing rate to stimulus intensity; amplitude-frequency characteristics, which relate the stimulus amplitude to stimulus frequency for a given response criterion; and phase-frequency characteristics, which relate the phase angle between the stimulus and the receptor response to stimulus frequency. This report, the first in a series of three, deals with the characteristics reflected in the neural firing rate. The two reports that follow deal with the receptor potential, which, if of sufficient amplitude, generates the propagated action potential. In the majority of the pacinian corpuscles investigated, the intensity characteristics for neural firing rates were steep at low stimulus intensities and plateaued at submultiples and multiples of the stimulus frequency as stimulus intensity was increased. Poststimulus time and interval histograms reveal that the plateaus occur as a result of phase locking to the stimulus. The submultiples and multiples of stimulus frequency at which phase locking was found and the length of the plateaus depended on stimulus frequency. These plateaus were eliminated with the use of narrow-band noise stimuli. The amplitude-frequency characteristics obtained with either a criterion of constant firing rate or that of a constant number of neural spikes per stimulus cycle were U-shaped functions. Their positions along both the intensity and frequency continua are affected by response criterion. For example, the mean (n = 19) amplitude-frequency characteristic generated with a constant firing rate criterion of 1 spike/s has a maximum sensitivity of about -37.0 dB re 1-micron peak and a best frequency (BF, stimulus frequency where maximum sensitivity occurs) of 465 Hz. The bandwidth, measured by Q3 dB, is 1.02. Alternatively, the average (n = 16) amplitude-frequency characteristic obtained with a response criterion of 1 spike per stimulus cycle has a maximum sensitivity of about -25.0 dB re 1-micron peak, a BF of 270 Hz and Q3 dB value of 1.16. Spontaneous activity (SPA; activity in the absence of controlled stimuli) was found in 13.6% of the pacinian corpuscles. Intensity characteristics and frequency characteristics of these corpuscles show features similar to those of corpuscles without spontaneous activity except that the intensity characteristics asymptote to SPA levels at low stimulus intensities.(ABSTRACT TRUNCATED AT 400 WORDS)This publication has 17 references indexed in Scilit:
- Components of receptor adaptation in a Pacinian corpuscleThe Journal of Physiology, 1965
- Receptors supplied by spinal nerves which respond to cardiovascular changes and adrenalineThe Journal of Physiology, 1964
- Separation of Transducer and Impulse-Generating Processes in Sensory ReceptorsScience, 1963
- EXCITATION AND INACTIVATION IN A RECEPTOR MEMBRANE*Annals of the New York Academy of Sciences, 1961
- The relation between receptor potentials and the concentration of sodium ionsThe Journal of Physiology, 1958
- THE STRUCTURE OF HUMAN DIGITAL PACINIAN CORPUSCLES (CORPUSCULA-LAMELLOSA) AND ITS FUNCTIONAL SIGNIFICANCE1958
- ELECTRON MICROSCOPY OF THE PACINIAN CORPUSCLEThe Journal of cell biology, 1957
- The distribution of myelin on nerve fibres from pacinian corpusclesThe Journal of Physiology, 1955
- Properties of the receptor potential in Pacinian corpusclesThe Journal of Physiology, 1953
- Local Responses in Pacinian CorpusclesAmerican Journal of Physiology-Legacy Content, 1952