Nonlinear Particle Acceleration in Relativistic Shocks
Preprint
- 22 April 2002
Abstract
Monte Carlo techniques are used to model nonlinear particle acceleration in parallel collisionless shocks of various speeds, including mildly relativistic ones. When the acceleration is efficient, the backreaction of accelerated particles modifies the shock structure and causes the compression ratio, r, to increase above test-particle values. Modified shocks with Lorentz factors less than about 3 can have compression ratios considerably greater than 3 and the momentum distribution of energetic particles no longer follows a power law relation. These results may be important for the interpretation of gamma-ray bursts if mildly relativistic internal and/or afterglow shocks play an important role accelerating particles that produce the observed radiation. For shock Lorentz factors greater than about 10, r approaches 3 and the so-called `universal' test-particle result of N(E) proportional to E^{-2.3} is obtained for sufficiently energetic particles. In all cases, the absolute normalization of the particle distribution follows directly from our model assumptions and is explicitly determined.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: