Compactifications of the Generalized Jacobian Variety

Abstract
The generalized Jacobian variety of an algebraic curve with at most ordinary double points is an extension of an abelian variety by an algebraic torus. Using the geometric invariant theory, we systematically compactify it in finitely many different ways and describe their structure in terms of torus embeddings. Our compactifications include all known good ones.

This publication has 19 references indexed in Scilit: