The Fate of Transposable Elements in Asexual Populations

Abstract
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.