Statistics of cosmic microwave background polarization

Abstract
We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multipole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor, can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturbations. Four sets of multipole moments completely describe isotropic temperature and polarization correlations; for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the vector and tensor contributions. The variance with which the multipole moments can be measured in idealized experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we construct coordinate-independent polarization two-point correlation functions, express them in terms of the multipole moments, and derive small-angle limits.
All Related Versions