Dosimetry characterization of a 32P source wire used for intravascular brachytherapy with automated stepping

Abstract
Depth-dose curve measurements and Monte Carlo simulations for a catheter-based 32P intravascular brachytherapy source wire are described. The measured dose rates were obtained using both radiochromic-dye film and an extrapolation chamber (EC). Calibrated radiochromic-dye films were irradiated at distances between 0.5 and 5 mm from the source axis in polystyrene phantoms, and scanned with high-resolution densitometers. Measurements with an automated EC with a 1 mm diameter collecting electrode were also performed at a distance of 2 mm from the source in polystyrene. The measured dose rates obtained from the film and EC were divided by the measured source activity to obtain measured values of dose rate per unit contained activity. Dosimetric calculations of the catheter-based 32P wire geometry were also obtained using several Monte Carlo codes (CYLTRAN, MCNP, PENELOPE, and EGS). The measured and calculated values of dose rate per unit contained activity are in good agreement (<10%) within the relevant treatment distances (1 to 4 mm). With carefully selected input parameters, the calculated depth-dose curves using these codes were within 5% at 4 mm depth. At greater depths the discrepancies between the codes increase. We discuss likely mechanisms for these differences.
Funding Information
  • Guidant Corporation and the Spanish Fondo de Investigación Sanitaria (FIS 00/1070)