Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics
- 1 April 1941
- journal article
- conference paper
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 9 (4) , 341-351
- https://doi.org/10.1063/1.1750906
Abstract
The dispersion and absorption of a considerable number of liquid and dielectrics are represented by the empirical formula In this equation, ε* is the complex dielectric constant, ε0 and ε∞ are the ``static'' and ``infinite frequency'' dielectric constants, ω=2π times the frequency, and τ0 is a generalized relaxation time. The parameter α can assume values between 0 and 1, the former value giving the result of Debye for polar dielectrics. The expression (1) requires that the locus of the dielectric constant in the complex plane be a circular arc with end points on the axis of reals and center below this axis. If a distribution of relaxation times is assumed to account for Eq. (1), it is possible to calculate the necessary distribution function by the method of Fuoss and Kirkwood. It is, however, difficult to understand the physical significance of this formal result. If a dielectric satisfying Eq. (1) is represented by a three‐element electrical circuit, the mechanism responsible for the dispersion is equivalent to a complex impedance with a phase angle which is independent of the frequency. On this basis, the mechanism of interaction has the striking property that energy is conserved or ``stored'' in addition to being dissipated and that the ratio of the average energy stored to the energy dissipated per cycle is independent of the frequency.
Keywords
This publication has 29 references indexed in Scilit:
- Dispersion und Absorption elektrischer Wellen in Alkoholen und wäßrigen LösungenAnnalen der Physik, 1939
- Dielectric Absorption in Polar Media and the Local FieldThe Journal of Chemical Physics, 1938
- Note on the thermodynamic interpretation of paramagnetic relaxation phenomenaPhysica, 1938
- Internal Friction in Solids II. General Theory of Thermoelastic Internal FrictionPhysical Review B, 1938
- On the theory of absorption and dispersion in paramagnetic and dielectric mediaPhysica, 1936
- Two Types of Dielectric PolarizationTransactions of The Electrochemical Society, 1934
- Dipole association in pure liquidsTransactions of the Faraday Society, 1934
- The dielectric properties of chlorinated diphenylsJournal of the Franklin Institute, 1933
- ELECTRIC PHASE ANGLE OF CELL MEMBRANESThe Journal of general physiology, 1932
- Zur Theorie der unvollkommenen DielektrikaAnnalen der Physik, 1913