Monitoring of venous hemodynamics in patients with cerebral venous thrombosis by transcranial Doppler ultrasound.

Abstract
DESPITE THE evident importance of venous collateral pathways in cerebral venous thrombosis (CVT), the interest in the assessment of the collateral pathways was limited. One major reason for this neglect has been the invasiveness of digital subtraction angiography (DSA) impeding serial examinations. Magnetic resonance (MR) imaging and MR angiography have focused new interest in the evaluation and monitoring of the thrombotic process.1-3 Their usefulness for analyzing hemodynamic properties, however, has been limited until now. Doppler ultrasound techniques have become the standard modality in the diagnosis and follow-up of thrombotic lesions of other body regions, especially in deep venous thrombosis of the legs.4 Their application to the cerebral circulation was hindered mainly by bony limitations. In the past few years, however, attempts have been made to assess the normal cerebral venous circulation by means of conventional transcranial Doppler ultrasound (TCD),5-8 and transcranial color-coded duplex sonography.9-12 Furthermore, elevated venous blood flow velocities have been reported in single adult cases with thrombotic occlusion of the major venous outlets.9,13,14 In some instances, follow-up examinations were performed that demonstrated dynamic changes in venous vessels.15-17 The ability to monitor venous hemodynamics over longer periods has not yet been shown in a larger group of patients. We intended to prove in a prospective study the assumption that TCD allows the detection and monitoring of blood flow velocities in venous vessels of patients with confirmed CVT. In addition, we studied the relationship between venous blood flow velocities and severity of disease, site of thrombosis, presence of bleeding, and outcome.

This publication has 1 reference indexed in Scilit: