Neuronal and Extraneuronal Effects of Intracisternally Administered 6‐Hydroxydopamine on the Developing Rat Brain

Abstract
Intracisternal administration of 100 μg 6‐OHDA to newborn rats causes permanent defects, not only of the monoaminergic neuron system, but also of extraneuronal tissue elements. The long noradrenergic fibre tracts are irreversibly destroyed, while the short projections recover and regenerate after a transient period of injury. In the major noradrenergic cell group, the locus coeruleus, most of the cells in the caudal and middle parts degenerate, while a small dorsorostral group survives and forms the source of the regenerating fibres. Dopaminergic and serotonergic fibre tracts are also affected. The 6‐OHDA treatment also damages granule and dial cells of the cerebellar cortex as well as the mesenchymal cells of the pial coverings of the cerebellum, leading to primitive foliation, absence of fissuration, and defective migration of granule cells and resulting in a marked reduction of cerebellar size, area, and granule cell number.