Abstract
A simple numerical scheme is proposed for computing the probability of first passage failure, P(T), in an interval O-T, for oscillators with nonlinear damping. The method depends on the fact that, when the damping is light, the amplitude envelope, A(t), can be accurately approximated as a one-dimensional Markov process. Hence, estimates of P(T) are found, for both single and double-sided barriers, by solving the Fokker-Planck equation for A(t) with an appropriate absorbing barrier. The numerical solution of the Fokker-Planck equation is greatly simplified by using a discrete time random walk analog of A(t), with appropriate statistical properties. Results obtained by this method are compared with corresponding digital simulation estimates, in typical cases.

This publication has 0 references indexed in Scilit: