Ensemble Transformation and Adaptive Observations

Abstract
Suppose that the geographical and temporal resolution of the observational network could be changed on a daily basis. Of all the possible deployments of observational resources, which particular deployment would minimize expected forecast error? The ensemble transform technique answers such questions by using nonlinear ensemble forecasts to rapidly construct ensemble-based approximations to the prediction error covariance matrices associated with a wide range of different possible deployments of observational resources. From these matrices, estimates of the expected forecast error associated with each distinct deployment of observational resources are obtained. The deployment that minimizes the chosen measure of forecast error is deemed optimal. The technique may also be used to find the perturbation that evolves into the leading eigenvector or singular vector of an ensemble-based prediction error covariance matrix. This time-evolving perturbation “explains” more of the ensemble-based prediction ... Abstract Suppose that the geographical and temporal resolution of the observational network could be changed on a daily basis. Of all the possible deployments of observational resources, which particular deployment would minimize expected forecast error? The ensemble transform technique answers such questions by using nonlinear ensemble forecasts to rapidly construct ensemble-based approximations to the prediction error covariance matrices associated with a wide range of different possible deployments of observational resources. From these matrices, estimates of the expected forecast error associated with each distinct deployment of observational resources are obtained. The deployment that minimizes the chosen measure of forecast error is deemed optimal. The technique may also be used to find the perturbation that evolves into the leading eigenvector or singular vector of an ensemble-based prediction error covariance matrix. This time-evolving perturbation “explains” more of the ensemble-based prediction ...

This publication has 0 references indexed in Scilit: