Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP
Top Cited Papers
- 25 May 2001
- journal article
- research article
- Published by Wiley in Journal of Quaternary Science
- Vol. 16 (4) , 299-307
- https://doi.org/10.1002/jqs.622
Abstract
Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice‐core records for six sites in Greenland (Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice‐sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual δ18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice‐core matches the GRIP short‐term isotope record, and also shows similar long‐term trends to the Dye‐3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short‐lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ‘8.2 ka event’); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6‰ stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd.Keywords
Funding Information
- European Community Project MILECLEM (ENV4-C797-0659)
This publication has 64 references indexed in Scilit:
- Borehole versus isotope temperatures on Greenland: Seasonality does matterGeophysical Research Letters, 2000
- Validity of the temperature reconstruction from water isotopes in ice coresJournal of Geophysical Research: Oceans, 1997
- The Greenland Ice Sheet Project 2 depth‐age scale: Methods and resultsJournal of Geophysical Research: Oceans, 1997
- The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instabilityJournal of Geophysical Research: Oceans, 1997
- CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice coresJournal of Geophysical Research: Oceans, 1997
- Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transitionJournal of Geophysical Research: Oceans, 1997
- Visual‐stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and applicationJournal of Geophysical Research: Oceans, 1997
- Oxygen 18/16 variability in Greenland snow and ice with 10−3‐ to 105‐year time resolutionJournal of Geophysical Research: Oceans, 1997
- Air‐snow exchange investigations at Summit, Greenland: An overviewJournal of Geophysical Research: Oceans, 1997
- A 135,000‐year Vostok‐Specmap Common temporal frameworkPaleoceanography and Paleoclimatology, 1993