Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic Differentiation
- 1 March 2008
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 19 (3) , 994-1006
- https://doi.org/10.1091/mbc.e07-09-0856
Abstract
Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.Keywords
This publication has 101 references indexed in Scilit:
- Vascular Endothelial Cell Growth Factor-AThe American Journal of Pathology, 2007
- Vascular Endothelial Growth Factor-A Is a Survival Factor for Retinal Neurons and a Critical Neuroprotectant during the Adaptive Response to Ischemic InjuryThe American Journal of Pathology, 2007
- Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signalingJournal of Neurobiology, 2005
- Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal KeratinocytesThe American Journal of Pathology, 2005
- Angiogenesis during exercise and trainingAngiogenesis, 2005
- Superior neovascularization and muscle regeneration in ischemic skeletal muscles following VEGF gene transfer by rAAV1 pseudotyped vectorsBiochemical and Biophysical Research Communications, 2005
- ErbB2 overexpression in mammary cells upregulates VEGF through the core promoterBiochemical and Biophysical Research Communications, 2005
- Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survivalDevelopmental Biology, 2003
- The biology of VEGF and its receptorsNature Medicine, 2003
- VEGF and VEGF receptor levels in retinal and brain-derived endothelial cellsBiochemical and Biophysical Research Communications, 2002