Frequent Toggling between Alternative Amino Acids Is Driven by Selection in HIV-1

Abstract
Host immune responses against infectious pathogens exert strong selective pressures favouring the emergence of escape mutations that prevent immune recognition. Escape mutations within or flanking functionally conserved epitopes can occur at a significant cost to the pathogen in terms of its ability to replicate effectively. Such mutations come under selective pressure to revert to the wild type in hosts that do not mount an immune response against the epitope. Amino acid positions exhibiting this pattern of escape and reversion are of interest because they tend to coincide with immune responses that control pathogen replication effectively. We have used a probabilistic model of protein coding sequence evolution to detect sites in HIV-1 exhibiting a pattern of rapid escape and reversion. Our model is designed to detect sites that toggle between a wild type amino acid, which is susceptible to a specific immune response, and amino acids with lower replicative fitness that evade immune recognition. Through simulation, we show that this model has significantly greater power to detect selection involving immune escape and reversion than standard models of diversifying selection, which are sensitive to an overall increased rate of non-synonymous substitution. Applied to alignments of HIV-1 protein coding sequences, the model of immune escape and reversion detects a significantly greater number of adaptively evolving sites in env and nef. In all genes tested, the model provides a significantly better description of adaptively evolving sites than standard models of diversifying selection. Several of the sites detected are corroborated by association between Human Leukocyte Antigen (HLA) and viral sequence polymorphisms. Overall, there is evidence for a large number of sites in HIV-1 evolving under strong selective pressure, but exhibiting low sequence diversity. A phylogenetic model designed to detect rapid toggling between wild type and escape amino acids identifies a larger number of adaptively evolving sites in HIV-1, and can in some cases correctly identify the amino acid that is susceptible to the immune response. Viruses, such as HIV, are able to evade host immune responses through escape mutations, yet sometimes they do so at a cost. This cost is the reduction in the ability of the virus to replicate, and thus selective pressure exists for a virus to revert to its original state in the absence of the host immune response that caused the initial escape mutation. This pattern of escape and reversion typically occurs when viruses are transmitted between individuals with different immune responses. We develop a phylogenetic model of immune escape and reversion and provide evidence that it outperforms existing models for the detection of selective pressure associated with host immune responses. Finally, we demonstrate that amino acid toggling is a pervasive process in HIV-1 evolution, such that many of the positions in the virus that evolve rapidly, under the influence of positive Darwinian selection, nonetheless display quite low sequence diversity. This highlights the limitations of HIV-1 evolution, and sites such as these are potentially good targets for HIV-1 vaccines.