Influence of cell cycle stage at nuclear transplantation on the development in vitro of mouse embryos

Abstract
Nuclei were transplanted from embryos of mice at different stages of the 1st and 2nd cell cycle to oocytes enucleated at various times after fertilization. After transfer of pronuclei, a greater proportion of embryos developed to blastocysts if donor and recipient embryos were at the same stage of the cell cycle (synchronous transfer = 94%, asynchronous transfer = 76%). By contrast, when 2-cell blastomere nuclei were fused to the cytoplasm of enucleated zygotes, there was a significant effect of both cytoplast and karyoplast cell cyccle stage on the development of the reconstituted embryos. Karyoplasts and cytoplasts derived from embryos at later stages of the cell cycle had greater potential to support development to blastocysts in vitro. It is suggested that the secretion of stage-specific messengers and the timing of nuclear membrane breakdown are the main factors causing the karyoplast and cytoplast effects, respectively.