Abstract
A new proof of the stability of closed Jackson-type queueing networks (with general service-time distributions) is given and sufficient conditions are given for obtaining Cesaro, weak and total variation convergence of the continuous-time joint queue length and residual service-time process to a limiting distribution. The result weakens the sufficient conditions (for stability) of Borovkov (1986) by allowing more general service-time distributions.

This publication has 3 references indexed in Scilit: