Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
- 1 August 2002
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 88 (2) , 732-739
- https://doi.org/10.1152/jn.2002.88.2.732
Abstract
The rhythmogenic capacity of the tail-innervating segments (L4-Co3) of the spinal cord was studied in isolated spinal cord and tail-spinal cord preparations of neonatal rats. Bath-applied serotonin/N-methyl-D-aspartate (NMDA) failed to produce a robust sacrococcygeal rhythmicity following midlumbar transection of the spinal cord. By contrast, a regular alternating left-right rhythm could be induced in the sacrococcygeal segments by application of noradrenaline (NA) or NA and NMDA before and after midlumbar transection of the cord. This rhythm was accelerated with the concentration of NMDA and was blocked by alpha1 or alpha2 adrenoceptor antagonists. The efferent bursts induced by NA/NMDA were accompanied by rhythmic tail movements produced by alternating activation of the left and right tail muscles and by coactivation of flexors, extensors, and abductors on a given side of the tail. This coactivation implies that reciprocal inhibitory pathways were not activated during the rhythm. Lesion experiments revealed that the rhythmogenic circuitry is distributed along all or most of the sacrococcygeal segments. The NA/NMDA-induced rhythm persisted in the isolated sacrococcygeal (S1-Co3), sacral (S1-S4), coccygeal (Co1-Co3), and smaller isolated regions of the sacrococcygeal cord. The rhythm also could be maintained in longitudinally split sacrococcygeal hemicords in which flexor, extensor, and abductor motoneurons are coactivated. This finding indicates that neither left/right nor flexor/extensor inhibitory interactions are required for rhythmogenesis in the sacrococcygeal cord. A slow rhythm lacking the alternating left-right pattern was induced by NA/NMDA in tail-innervating caudal lumbar segments of isolated L4-Co3 preparations. This rhythm was independent of the concurrent sacrococcygeal rhythm and the activity pattern of the tail musculature and it does not seem to contribute to rhythmic tail movements under these conditions. Comparative studies of the rhythm produced in the isolated caudal lumbar, sacrococcygeal cord, and caudal thoracic-rostral lumbar segments revealed that the S1-Co3 rhythm was faster than the L4-L6 pattern and slower than the T6-L3 rhythm. It is suggested that the caudal lumbar and sacrococcygeal segments of the cord are normally driven by the faster rostral lumbar central pattern generators. The relevance of the findings described above to pattern generation in the mammalian spinal cord is discussed.Keywords
This publication has 31 references indexed in Scilit:
- Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitroThe Journal of Physiology, 2001
- Spasticity in Rats With Sacral Spinal Cord InjuryJournal of Neurotrauma, 1999
- How Do We Approach the Locomotor Network in the Mammalian Spinal Cord?aAnnals of the New York Academy of Sciences, 1998
- Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugsBrain Research, 1991
- locomotor activity in a spinal cord-indlimb muscles preparation of the newborn rat studied in vitroNeuroscience Letters, 1987
- Afferent and efferent connections of the rat tail flick reflex (a model used to analyze pain control mechanisms)Journal of Comparative Neurology, 1982
- Vertebral Muscles of the Back and Tail of the Albino Rat (Rattus norvegicus albinus); pp. 1–23Brain, Behavior and Evolution, 1980
- The locomotion of the acute spinal cat injected with clonidine i.v.Brain Research, 1973
- The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbitBrain Research, 1969
- The Effect of DOPA on the Spinal Cord 6. Half‐centre organization of interneurones transmitting effects from the flexor reflex afferentsActa Physiologica Scandinavica, 1967