Abstract
In the weedy plant species Allium vineale (wild garlic), individuals may simultaneously produce sexually and asexually derived offspring, by seed and bulbils, respectively. In this study, genetic and genotypic diversity was determined in samples from 14 European A. vineale populations using nuclear (RAPD) and cytoplasmic (PCR-RFLP of cpDNA) markers to investigate the importance of the different reproductive modes. In the whole sample, 77 nuclear multilocus genotypes and four chloroplast haplotypes (chlorotypes) were found. Populations exhibited a high degree of subdivision for nuclear and cytoplasmic markers as estimated from hierarchical F-statistics; at the same time, identical chlorotypes could be found in populations separated by large distances. Genotypic diversity was significantly lower than expected under free recombination in almost all populations, indicating that recruitment into populations is mostly by asexually produced offspring. Nevertheless, within each chlorotype, the distribution of markers from pairs of nuclear loci was incompatible with a purely clonal structure, suggesting that many multilocus genotypes have originated by sexual recombination rather than by mutation within asexual lineages. It is argued that the weedy habit of A. vineale is likely to have favored bulbil reproduction, whereas sexually generated genotypes may have facilitated local adaptation during the species' expansion across Europe.