Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis
- 1 April 1996
- journal article
- research article
- Published by American Society for Microbiology in Journal of Clinical Microbiology
- Vol. 34 (4) , 870-876
- https://doi.org/10.1128/jcm.34.4.870-876.1996
Abstract
A random amplified polymorphic DNA (RAPD) fingerprinting method has been developed to differentiate Salmonella enteritidis isolates. A total of 65 arbitrary primers were screened with S. enteritidis isolates of different phage types. This allowed selection of a panel of primers capable of detecting DNA polymorphisms among S. enteritidis isolates. This panel was used to examine a panel of 29 isolates of S. enteritidis which had been previously characterized by other subtyping methods, including phage typing (PT) (n = 7), ribotyping (RT) (n = 13), and pulsed-field gel electrophoresis (PFGE). Applied collectively, these three methods resolved the collection into 20 different subtypes. However, by the RAPD fingerprinting method alone, 14 RAPD subtypes were revealed. Eight isolates of S. enteritidis phage type 8 that failed to be discriminated by other typing methods (PT, RT, and PFGE) were resolved into three different subtypes by RAPD analysis. In contrast, isolates that were derived from the same sources were not differentiated by any of the subtyping methods employed, including PT, RT, PFGE, and RAPD analysis. This RAPD approach to S. enteritidis subtyping provided more discriminatory power than did any of several other subtyping methods applied individually. Once the challenging step of primer identification was accomplished, determinations of the appropriate concentrations of arbitrary primer, DNA template, and MG2+ ion were also necessary for optimal discriminatory power. The bacterial DNA used in this RAPD protocol was obtained by boiling the bacterial sample. This simple procedure yielded DNA that produced fingerprint patterns as consistent as those obtained from phenol-chloroform-extracted DNA. Clearly, when appropriately constituted primer sets are identified and employed, RAPD analysis provides a simple, rapid, and powerful subtyping method for S. enteritidis.Keywords
This publication has 26 references indexed in Scilit:
- Use of Arbitrarily Primed Polymerase Chain Reaction Analysis to Type Disease and Carrier Strains of Neisseria meningitidis Isolated during a University OutbreakThe Journal of Infectious Diseases, 1994
- Plasmid analysis ofSalmonella enteritidisisolated from human gastroenteritis cases and from epidemiologically associated poultry flocksEpidemiology and Infection, 1993
- Variations in biochemical phenotypes and phage types ofSalmonella enteritidisin Germany 1980–92Epidemiology and Infection, 1993
- Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primersHeredity, 1993
- Salmonella enteritidis five years onThe Lancet, 1993
- A comparison ofSalmonella enteritidisphage types from egg-associated outbreaks and implicated laying flocksEpidemiology and Infection, 1993
- How is the source of food poisoning outbreaks established? The example of three consecutive Salmonella enteritidis PT4 outbreaks linked to eggs.Journal of Epidemiology and Community Health, 1991
- International increase in Salmonella enteritidis: A new pandemic?Epidemiology and Infection, 1990
- The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellaeJournal of Medical Microbiology, 1989
- A phage-typing scheme for Salmonella enteritidisEpidemiology and Infection, 1987