Overexpression of Metallothionein Confers Resistance to Anticancer Drugs

Abstract
Resistance to antineoplastic agents is the major obstacle to curative therapy of cancer. Tumor cell lines with acquired resistance to the antineoplastic agent cis-diamminedichloroplatinum(II) overexpressed metallothionein and demonstrated cross-resistance to alkylating agents such as chlorambucil and melphalan. Human carcinoma cells that maintained high levels of metallothionein because of chronic exposure to heavy metals were resistant to cis-diamminedichloroplatinum(II), melphalan, and chlorambucil. Furthermore, cells transfected with bovine papilloma virus expression vectors containing DNA encoding human metallothionein-IIA were resistant to cis-diamminedichloroplatinum(II), melphalan, and chlorambucil but not to 5-fluorouracil or vincristine. Thus, overexpression of metallothionein represents one mechanism of resistance to a subset of clinically important anticancer drugs.