Abstract
This paper describes the methods used and some preliminary results of simulated erosion studies on soils with cryptogamic crusts from a semiarid rangeland environment. Two 0·3 m2 shallow monoliths were collected from the upper 20 cm of a Typic Haplargid from the semiarid Australian rangelands and subjected to a range of rainfall intensities and durations representing potentially erosive summer and winter rainfall events. One of the monoliths was cleared of vegetation by a simulated low intensity bushfire. Macro‐ and micromorphological properties of the surface, as well as runoff and erosion losses, were measured during the experiment. Runoff and erosion losses were, as expected, greater for all conditions on the burned than on the unburned monolith. Intensive rainfall damaged the cryptogamic crust unprotected by vegetation by widening and deepening desiccation cracks around the cryptogams, and breaking away and dispersing larger soil fragments from the crack margins. The burned and eroded surfaces provided a much poorer environment for seed entrapment, germination, and growth than did the unburned surface.