Provable wellorderings of formal theories for transfinitely iterated inductive definitions
- 12 March 1978
- journal article
- Published by Cambridge University Press (CUP) in The Journal of Symbolic Logic
- Vol. 43 (1) , 118-125
- https://doi.org/10.2307/2271954
Abstract
By [12] we know that transfinite induction up to ΘεΩN+10 is not provable in IDN, the theory of N-times iterated inductive definitions. In this paper we will show that conversely transfinite induction up to any ordinal less than ΘεΩN+10 is provable in IDNi, the intuitionistic version of IDN, and extend this result to theories for transfinitely iterated inductive definitions.In [14] Schütte proves the wellordering of his notational systems using predicates is wellordered) with Mκ ≔ {x ∈ and 0 ≤ κ ≤ N. Obviously the predicates are definable in IDNi with the defining axioms: where Prog [Mκ, X] means that X is progressive with respect to Mκ, i.e. The crucial point in Schütte's wellordering proof is Lemma 19 [14, p. 130] which can be modified to where TI[Mκ + 1, a] is the scheme of transfinite induction over Mκ + 1 up to a.Keywords
This publication has 8 references indexed in Scilit:
- Proof TheoryPublished by Springer Nature ,1977
- Die Beziehungen Zwischen den OrdinalzahlsystemenΣ Und $$\bar \Theta \left( \omega \right)$$Archive for Mathematical Logic, 1975
- Iterated inductive definitions, trees and ordinalsLecture Notes in Mathematics, 1973
- Ein Bezeichnungssystem für OrdinalzahlenArchive for Mathematical Logic, 1970
- Ein Bezeichnungssystem für OrdinalzahlenArchive for Mathematical Logic, 1969
- Ein konstruktives system von OrdinalzahlenArchive for Mathematical Logic, 1968
- On ordinal diagramsJournal of the Mathematical Society of Japan, 1961
- Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen ZahlentheorieMathematische Annalen, 1943