On the functional derivative of the kinetic energy density functional
- 1 November 1982
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 77 (9) , 4576-4585
- https://doi.org/10.1063/1.444409
Abstract
The functional derivative of the kinetic energy Ts[ρ↑,ρ↓] of a noninteracting system of particles with density ρ=ρ↑+ρ↓ is evaluated in terms of the Kohn–Sham spin orbital densities ρiσ and Lagrange multipliers εiσ(σ=↑ or ↓). Of particular interest is the functional derivative of TΔ[ρ↑,ρ↓] =Ts[ρ↑,ρ↓]−Tw[ρ↑,ρ↓], where Tw[ρ↑,ρ↓] is the Weizsäcker kinetic energy functional: δTΔ[ρ↑,ρ↓]/δρσ =(1/8ρσ){JNσi=1[(∇ρiσ ⋅ ∇ρiσ)/ρiσ −(∇ρσ ⋅ ∇ρσ)/ρσ]} −(1/ρσ)(JNσi=1 εiσρiσ −μσρσ). This quantity is used to analyze the approximate kinetic energy density functional proposed by Acharya et al.Keywords
This publication has 22 references indexed in Scilit:
- On the nature of the correction to the Weizsacker termThe Journal of Chemical Physics, 1982
- The weizsacker term in density functional theoryChemical Physics Letters, 1981
- Amino-terminal amino acid sequence of human leukocyte interferon.Proceedings of the National Academy of Sciences, 1980
- On the Quantum‐Mechanical Kinetic Energy as a Measure of the Information in a DistributionIsrael Journal of Chemistry, 1980
- The Thomas-Fermi theory of atoms, molecules and solidsAdvances in Mathematics, 1977
- The stability of matterReviews of Modern Physics, 1976
- Inhomogeneous Electron GasPhysical Review B, 1964
- Zur Theorie der KernmassenThe European Physical Journal A, 1935
- Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der ElementeThe European Physical Journal A, 1928
- The calculation of atomic fieldsMathematical Proceedings of the Cambridge Philosophical Society, 1927