Control of proteoliposomal cytochrome c oxidase: the overall reaction

Abstract
The control of cytochrome c oxidase incorporated into proteoliposomes has been investigated as a function of membrane potential (ΔΨ) and pH gradient (ΔpH). The oxidase generates a pH gradient (alkaline inside) and a membrane potential (negative inside) when respiring on external cytochrome c. Low levels of valinomycin collapse ΔΨ and increase ΔpH; the respiration rate decreases. High levels of valinomycin, however, decrease ΔpH as valinomycin can also act as a protonophore. Nigericin (in the absence of valinomycin) increases ΔΨ and collapses ΔpH; the respiration rate increases. On a millivolt equivalent basis ΔpH is a more effective inhibitor of activity than is ΔΨ. In the absence of any ionophores the cytochrome oxidase proteoliposomes enter a steady state, in which there are both ΔpH and ΔΨ components of control. Present and previous data suggest that the respiration rate responds in a linear way ("ohmically") to increasing ΔpH but in a nonlinear way to ΔΨ ("non-ohmically"). High levels of both ΔΨ and ΔpH do not completely inhibit turnover (maximal respiratory control values lie between 6 and 10). The controlled steady state involves the electrophoretic entry and electroneutral exit of K+ from the vesicles. A model is presented in which the enzyme responds to both ΔpH and ΔΨ components of the proton-motive force, but is more sensitive to ΔpH than to ΔΨ at an equivalent ΔμH+. The steady state of the proteoliposome system can be represented for any set of permeabilities and enzyme activity levels using the computer simulation programme Stella™.Key words: cytochrome c, cytochrome oxidase, proteoliposomes, respiratory control, modelling, valinomycin, nigericin.

This publication has 18 references indexed in Scilit: