Dark Matter Problem in Disk Galaxies

Abstract
In the generic CDM cosmogony, dark-matter halos emerge too lumpy and centrally concentrated to host observed galactic disks. Moreover, disks are predicted to be smaller than those observed. We argue that the resolution of these problems may lie with a combination of the effects of protogalactic disks, which would have had a mass comparable to that of the inner dark halo and be plausibly non-axisymmetric, and of massive galactic winds, which at early times may have carried off as many baryons as a galaxy now contains. A host of observational phenomena, from quasar absorption lines and intracluster gas through the G-dwarf problem point to the existence of such winds. Dynamical interactions will homogenize and smooth the inner halo, and the observed disk will be the relic of a massive outflow. The inner halo expanded after absorbing energy and angular momentum from the ejected material. Observed disks formed at the very end of the galaxy formation process, after the halo had been reduced to a minor contributor to the central mass budget and strong radial streaming of the gas had died down.

This publication has 0 references indexed in Scilit: