Recent 31 P n.m.r. studies of myocardium
- 25 June 1980
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London. B, Biological Sciences
- Vol. 289 (1037) , 437-439
- https://doi.org/10.1098/rstb.1980.0060
Abstract
Earlier work from this laboratory has concerned the possible use of phosphorus n.m.r. as a method to monitor, in a non-invasive manner, the biochemical state of the perfused heart as a function of its mechanical performance. We showed that a simulated coronary infarction could be detected by 31 P n.m.r. (Hollis et al 1978 a and that hypothermia and KC1 arrest could preserve the pH and the ATP levels at more nearly normal values than in a non-arrested heart during long periods (40 min) of ischaemia (Hollis et al . 1978 b ).More recently it was shown that multiple doses of KC1, given at intervals, were more effective in this respect than was a single dose (Flaherty et al . 1979). These studies essentially followed the kinetics of transitions of the heart between two or more distinct physiological states (i.e. normoxic and ischaemic, with or without KC1 arrest) by observation of the 31 P n.m.r. spectra at various time intervals over periods of up to 1 h. As described in detail and demonstrated in Dr Truman Brown’s contribution to these discussions, the rates of chemical exchange reactions occurring in a steady state can be measured by the techniques of saturation transfer in various biological systems, including perfused hearts.Keywords
This publication has 0 references indexed in Scilit: