Abstract
It is shown that each semivalue (bounded semivalue) on the class SG of monotonic simple games with a finite support can be uniquely extended to a semivalue (continuous semivalue) on the class G of all games with a finite support. We use this to show that the formula that is given for semivalues (continuous semivalues) on G by Dubey, Neyman and Weber also holds for semivalues (bounded semivalues) on SG. We also derive another formula for semivalues on SG (in terms of the minimal winning coalitions of the game).
Keywords

This publication has 0 references indexed in Scilit: