Attenuation of dysfunction in the postischemic 'stunned' myocardium by dimethylthiourea.
- 1 August 1987
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation
- Vol. 76 (2) , 458-468
- https://doi.org/10.1161/01.cir.76.2.458
Abstract
The mechanism for the prolonged contractile dysfunction observed in myocardium reperfused after reversible regional ischemia ("stunned" myocardium) is unclear. Recent studies suggest that myocardial stunning may be mediated by oxygen-derived free radicals, but the precise molecular species involved remain unknown. Thus we explored the role of the highly cytotoxic hydroxyl radical in regional postischemic dysfunction by using dimethylthiourea (DMTU), an effective and highly permeable hydroxyl radical scavenger. Open-chest dogs undergoing a 15 min occlusion of the left anterior descending coronary artery followed by 4 hr of reperfusion received either DMTU (0.5 g/kg iv over 45 min starting 30 min before occlusion, n = 14) or saline (n = 15). Control and treated dogs were comparable with respect to variables that may affect postischemic dysfunction, including heart rate, aortic pressure, left atrial pressure, arterial blood gases and hemoglobin concentration, size of the occluded bed (determined by postmortem perfusion), and collateral blood flow (determined by radioactive microspheres). Regional myocardial function was assessed by measuring wall thickening with an epicardial Doppler probe. The two groups exhibited comparable systolic thickening under baseline conditions and similar degrees of dyskinesis during ischemia. After reperfusion, however, wall thickening (expressed as percent of baseline) was considerably greater in treated as compared with control dogs: 53 +/- 9% (mean +/- SEM) vs 9 +/- 14% (p less than .03) at 1 hr, 55 +/- 9% vs 23 +/- 13% (p less than .05) at 2 hr, 60 +/- 9% vs 28 +/- 14% (p less than .05) at 3 hr, and 67 +/- 5% vs 36 +/- 13% (p less than .05) at 4 hr. Thus DMTU produced a significant and sustained improvement in recovery of contractile function. In concentrations greater than the plasma levels attained in vivo, DMTU did not scavenge either hydrogen peroxide or superoxide anion in vitro. These results suggest that the myocardial dysfunction occurring after a brief episode of regional ischemia is mediated in part by the hydroxyl radical.This publication has 43 references indexed in Scilit:
- Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining techniquePublished by Elsevier ,2004
- Hydrogen peroxide causes dimethylthiourea consumption while hydroxyl radical causes dimethyl sulfoxide consumption in vitroPublished by Elsevier ,2003
- Free radicals in ischemic myocardial injuryJournal of Free Radicals in Biology & Medicine, 1985
- Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deteriorationThe American Journal of Cardiology, 1985
- Reduction of sympathetic inotropic response after ischemia in dogs. Contributor to stunned myocardium.Journal of Clinical Investigation, 1985
- Xanthine oxidase as a source of free radical damage in myocardial ischemiaJournal of Molecular and Cellular Cardiology, 1985
- Oxygen-Derived Free Radicals in Postischemic Tissue InjuryNew England Journal of Medicine, 1985
- Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea.Journal of Clinical Investigation, 1984
- Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury.Journal of Clinical Investigation, 1983
- Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs.Journal of Clinical Investigation, 1975