Abstract
Recent neurochemical evidence suggests that chemical or electrial stimulation of the subthalamic nucleus (STH) increases dopamine release in the substantia nigra (SN) with a subsequent decrease in the striatum. In a previous paper, we reported that bicuculline-induced activation of the STH increases neuronal activity in the substantia nigra pars reticulata (SNpr) and in the pallidal complex. In order to investigate the role played by the dopaminergic system in the observed activation, the neuronal responses of subthalamic nucleus target structures were studied in amine depleted rats following subthalamic stimulation. Amine depletion was accomplished by pretreating the rats with reserpine (2 mg/kg; S.C.) and with alpha-methyl-para-tyrosine (α-mpt; 50 mg/kg; I.P.).Following this treatment, dopamine levels were reduced by 94% in the striatum as measured by HPLC. Amine depletion significantly increased the spontaneous activity of subthalamic cells by 53%. In the SNpr, no significant changes in the spontaneous neuronal activity were observed, but the excitatory responses to bicuculline-induced stimulation of the STH were potentiated as compared to non-treated animals. In the pallidial complex (GP-EP), no potentiation was found. The data suggest that the spontaneous pattern of discharge of the STH is probably under monoaminergic control. They also suggest a reciprocal interaction between dopamine and glutamatergic afferent terminals from the STH within the SNpr, but not in the pallidal complex.

This publication has 42 references indexed in Scilit: