Abstract
CEA TVS film is a therapy verification film that has been recently introduced in the North American market. This film features linear characteristic curves for photon energies from 137Cs to 18 MV as reported by Cheng and Das [Med. Phys. 23, 1225 (1996)]. In Saskatoon, TVS film was investigated for its application in the measurement of dose distributions with 4 and 18 MV linacs and a 60Co unit. The TVS film jacket has a layer of conductive material that has a minimal effect on the film's response. Film sensitivity generally increases for exposures normal to the incident beam as compared with parallel exposures, but was highly dependent on beam energy and depth of measurement. Fractional depth doses obtained in the parallel orientation agreed well with ion chamber measurements for the linac beams at depths beyond Dmax; ion chamber measurements differed by a maximum of 1.6% and 2.6% for the 4 and 18 MV beams, respectively. In the buildup region, an increase in film response was found when compared to the ion chamber measurements for both linac beams. With the 60Co beam, the TVS film showed an increase in sensitivity with depth as the proportion of scattered soft x rays increases; the maximum difference between ion chamber and film fractional depth doses was 7.8%. The TVS film demonstrates a substantial improvement over Kodak X-Omat V film for measuring depth doses in the parallel orientation, for all beams considered. Generally, the results confirm TVS film as an accurate and practical dosimeter for the measurement of dose distributions in high energy photon beams.