Cellular and molecular reactions in mouse muscles after myoblast implantation

Abstract
Implantation of skeletal muscle precursor cells is a potential means of cell-mediated gene therapy. One unresolved question is the degree of immunogenicity of such myoblasts. We designed the extreme situation of implanting cells of a non-histocompatible myoblast cell line into cryodamaged, but regeneration-capable, muscles of adult mice. Without immuno-suppression donor cells are rejected within the first weeks. Immunosuppression with Cyclosporin A prevented invasion of T-lymphocytes and allowed differentiation of implanted myoblasts into myofibres as well as down-regulation of MHC expression. Still, withdrawal of Cyclosporin A after 4 weeks triggered lymphocyte invasion and cytotoxic cell reactions with rejection of donor tissue. Although the vast majority of muscle fibres was MHC-negative 1–4 days after Cyclosporin A withdrawal, single small desmin-positive profiles were weakly positive for donor MHC. Parallel with the increase in the number of lymphocytes, larger numbers of small and large muscle fibres expressed high levels of either donor, host or both, class I — but not class II — molecules. Surprisingly, immune reactions continued over several months, causing gradual loss of muscle tissue. Donor class I molecules persisted for more than 6 months after Cyclosporin A withdrawal, clearly indicating survival of donor muscle fibres despite ongoing rejection. Indirect evidence on the other hand suggests additional loss of host fibres, possibly caused by cytokine release from the immune cells (bystander damage). We conclude that transient treatment with Cyclosporin A induced a kind of tolerance related to the maturation and down-regulation of class I antigens in donor muscle fibres. It is suggested that the start of immune reaction following Cyclosporin A withdrawal is initiated by remaining small amounts of donor MHC molecules, possibly related to the continuous proliferation of the cell-lined-derived donor myoblasts.