Solar filter for the Mars laser communication demonstration optical receiver

Abstract
To maximize the cost-effectiveness of the Mars Laser Communication Demonstration (MLCD), the project is pursuing the use of ground-based astronomical telescopes as large-aperture optical receiving antennae. To facilitate communication as the spacecraft approaches solar conjunction, a large membrane filter is being considered to reject approximately 95% of the sun’s power, while efficiently admitting light at the 1060 nm signal wavelength. Through the use of this filter and some additional facility modifications, the problems of thermally-induced telescope aberrations and dangerous focusing of solar power can effectively be mitigated. The use of a membrane filter is expected to be cost competitive, introduce less scattered light, and provide more flexibility in placement and operations than alternative approaches. This paper addresses the initial design of the filter and preparation of test samples to evaluate candidate materials.

This publication has 0 references indexed in Scilit: