Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli
Open Access
- 1 June 1992
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 174 (12) , 3972-3980
- https://doi.org/10.1128/jb.174.12.3972-3980.1992
Abstract
In Escherichia coli, the expression of a group of operons involved in aerobic metabolism is regulated by a two-component signal transduction system in which the arcB gene specifies the membrane sensor protein and the arcA gene specifies the cytoplasmic regulator protein. ArcB is a large protein belonging to a subclass of sensors that have both a transmitter domain (on the N-terminal side) and a receiver domain (on the C-terminal side). In this study, we explored the essential structural features of ArcB by using mutant analysis. The conserved His-292 in the transmitter domain is indispensable, indicating that this residue is the autophosphorylation site, as shown for other homologous sensor proteins. Compression of the range of respiratory control resulting from deletion of the receiver domain and the importance of the conserved Asp-533 and Asp-576 therein suggest that the domain has a kinetic regulatory role in ArcB. There is no evidence that the receiver domain enhances the specificity of signal transduction by ArcB. The defective phenotype of all arcB mutants was corrected by the presence of the wild-type gene. We also showed that the expression of the gene itself is not under respiratory regulation.Keywords
This publication has 46 references indexed in Scilit:
- Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genesPublished by Elsevier ,2004
- Adaptive responses to oxygen limitation inEscherichia coliTrends in Biochemical Sciences, 1991
- Adaptation of Escherichia coli to respiratory conditions: Regulation of gene expressionCell, 1991
- FNR and its role in oxygen-regulated gene expression inEscherichia coliFEMS Microbiology Letters, 1990
- Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteinsJournal of Molecular Biology, 1989
- A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation.Genes & Development, 1989
- The Cpx proteins of Escherichia coli K12Journal of Molecular Biology, 1988
- Host cell–plasmid interactions in the expression of DNA donor activity by F+ strains of Escherichia coli K‐12BioEssays, 1985
- PROTEIN-DNA RECOGNITIONAnnual Review of Biochemistry, 1984
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970