Cocaine Induces a Differential Dose‐Dependent Alteration in the Expression Profile of Immediate Early Genes, Transcription Factors, and Caspases in PC12 Cells
- 1 August 2005
- journal article
- Published by Wiley in Annals of the New York Academy of Sciences
- Vol. 1053 (1) , 482-490
- https://doi.org/10.1111/j.1749-6632.2005.tb00058.x
Abstract
Cocaine is a widely used drug of abuse and psychostimulant that acts on the central nervous system by blocking the dopamine reuptake sites. PC12 cells, a rat pheochromocytoma clonal line, in the presence of nerve growth factor (NGF), multiply and differentiate into competent neurons that can synthesize, store, and secrete the neurotransmitter dopamine (DA). In the present study, we evaluated the effect of increasing doses of cocaine on the expression of immediate early genes (IEGs), c-fos and c-jun, and closely related transcription factors, SP-1 and NF-kbeta, at 24 h after the exposure to cocaine (50, 100, 200, 500, 1000, 2500 microM) in NGF-differentiated PC12 cells. Cocaine (50-500 microM) resulted in significant induction of the expression of c-fos, c-jun, SP-1, and NF-kbeta. However, higher concentrations of cocaine (1000 and 2500 microM) resulted in the downregulation of these expressions after 24 h. To further understand the role of dose-dependent changes in the mechanisms of cell death, we evaluated the protein expression of apoptotic markers. A concentration-dependent increase in the expression of caspase-9 and -3 was observed up to 500 microM cocaine. However, the higher dose did not show any expression. We also evaluated the effect of increasing doses of cocaine on DA concentration and the expression of dopamine transporter (DAT). A significant dose-dependent decrease in the concentration of DA as well as the expression of DAT was observed 24 h after the exposure of PC12 cells to cocaine. Therefore, in the present study, we reported that cocaine has both upstream and downstream regulatory actions on some IEGs and transcription factors that can regulate the mechanism of cell death, and these effects on gene expression are independent of its action on the dopaminergic system.Keywords
This publication has 22 references indexed in Scilit:
- Dopamine displaces [3H]domperidone from high‐affinity sites of the dopamine D2 receptor, but not [3H]raclopride or [3H]spiperone in isotonic medium: Implications for human positron emission tomographySynapse, 2003
- Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusersProceedings of the National Academy of Sciences, 2002
- Cocaine activates redox-regulated transcription factors and induces TNF-α expression in human brain endothelial cellsBrain Research, 2001
- Cocaine-induced changes in extracellular dopamine determined by microdialysis in awake squirrel monkeysPsychopharmacology, 2000
- Selegiline Effects on Cocaine-Induced Changes in Medial Temporal Lobe Metabolism and Subjective Ratings of EuphoriaNeuropsychopharmacology, 1999
- Neurotransmitter Transporters: Recent ProgressAnnual Review of Neuroscience, 1993
- Molecular characterization of the dopamine transporterTrends in Pharmacological Sciences, 1993
- Studies of the Mechanism of Inhibition of the Dopamine Uptake Carrier by Cocaine in Vitro Using Rotating Disk Electrode VoltammetryaAnnals of the New York Academy of Sciences, 1992
- A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaineBiochemical Pharmacology, 1992
- Changes in brain glucose metabolism in cocaine dependence and withdrawalAmerican Journal of Psychiatry, 1991