The origin of palmitic acid in brain of the developing rat
- 1 August 1992
- Vol. 27 (8) , 587-592
- https://doi.org/10.1007/bf02536115
Abstract
A rat milk substitute containing lower amounts of palmitic and oleic acid in the triacylglycerols in comparison to natural rat milk was fed to artificially reared rat pups from day 7 after birth to day 14. Pups reared by their mother served as controls. Free trideuterated (D3) palmitic acid [(C2H3)(CH2)14COOH, 98 atom % D] and free perdeuterated (D31) palmitic acid [C15 2H31COOH, 99 atom % D] in equal quantity were mixed into the triacylglycerols of the milk substitute in an amount equal to 100% of the palmitic acid in the triacylglycerols. A control milk substitute contained unlabeled free palmitic acid in an amount equal to 100% of the palmitic acid in the triacylglycerols of the milk substitute. The objective was to determine if palmitic acid in the diet contributed significantly to the palmitic acid content of developing brain and other organs. The methyl esters of the fatty acids were analyzed by gas chromatography and the palmitic acid methyl ester was examined by fast atom bombardment mass spectrometry. The proportion of deuterated methyl palmitate as a percentage of total palmitate was determined; 32% of the palmitic acid in liver and 12% of the palmitic acid in lung were trideuterated and perdeuterated palmitic acid in approximately equal amounts. The brain, by contrast, did not contain the deuterated palmitic acid moiety. Quantitation of palmitic acid and total fatty acids revealed a significant accumulation in organs in the interval from 7 to 14 days of age. Under our experimental conditions, labeled palmitic acid does not enter the brain. Consequently, we conclude that the developing brain produces all required palmitic acid byde novo synthesis.Keywords
This publication has 31 references indexed in Scilit:
- Milk-substitutes comparable to rat's milk; their preparation, composition and impact on development and metabolism in the artificially reared ratBritish Journal of Nutrition, 1989
- Utilization of Plasma Fatty Acid in Rat Brain: Distribution of [14C]Palmitate Between Oxidative and Synthetic PathwaysJournal of Neurochemistry, 1987
- Effects of Deuterium Substitution on the Catabolism of β‐Phenylethylamine: An In Vivo StudyJournal of Neurochemistry, 1986
- Substrates of Energy Metabolism of the Pituitary and Pineal GlandsJournal of Neurochemistry, 1983
- INCORPORATION AND METABOLISM OF THE DIETARY TRANS‐UNSATURATED FATTY ACID, ELAIDIC ACID, BY DEVELOPING RAT BRAIN1Journal of Neurochemistry, 1979
- SIMULTANEOUS INCORPORATION OF ORALLY ADMINISTERED [9, 10‐3H2]OLEIC AND [1‐14C]LINOLEIC ACIDS INTO LIPIDS OF THE ADULT RAT BRAINJournal of Neurochemistry, 1973
- Metabolism of [1-14c]palmitic acid in the developing brain:Persistence of radioactivity in the carboxyl carbonBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1973
- Incorporation of [1-14C]acetate into the fatty acids of the developing rat brainBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1969
- THE OXIDATION OF UNIFORMLY LABELLED ALBUMIN‐BOUND PALMITIC ACID TO CO2 BY THE PERFUSED CAT BRAIN*Journal of Neurochemistry, 1966