Prediction Via Orthogonalized Model Mixing

Abstract
We introduce an approach and algorithms for model mixing in large prediction problems with correlated predictors. We focus on the choice of predictors in linear models, and mix over possible subsets of candidate predictors. Our approach is based on expressing the space of models in terms of an orthogonalization of the design matrix. Advantages are both statistical and computational. Statistically, orthogonalization often leads to a reduction in the number of competing models by eliminating correlations. Computationally, large model spaces cannot be enumerated; recent approaches are based on sampling models with high posterior probability via Markov chains. Based on orthogonalization of the space of candidate predictors, we can approximate the posterior probabilities of models by products of predictor-specific terms. This leads to an importance sampling function for sampling directly from the joint distribution over the model space, without resorting to Markov chains. Compared to the latter, ortho...

This publication has 0 references indexed in Scilit: