General approach to filtering with fractional brownian noises — application to linear systems

Abstract
At first a general approach is proposed to filtering in systems where the observation noise is a fractional Brownian motion. It is shown that the problem can be handled in terms of some appropriate semimartingale and analogs of the classical innovation process and fundamental filtering theorem are obtained. Then the problem of optimal filtering is completely solved for Gaussian linear systems with fractional Brownian noises. Closed form simple equations are derived both for the mean of the optimal filter and the variance of the filtering error. Finally the results are explicited in various specific cases