MLC3F transgene expression in iv mutant mice reveals the importance of left‐right signalling pathways for the acquisition of left and right atrial but not ventricular compartment identity
Open Access
- 25 April 2001
- journal article
- research article
- Published by Wiley in Developmental Dynamics
- Vol. 221 (2) , 206-215
- https://doi.org/10.1002/dvdy.1135
Abstract
Transcriptional differences between left and right cardiac chambers are revealed by an nlacZ reporter transgene controlled by regulatory sequences of the MLC3F gene, which is expressed in the left ventricle (LV), atrioventricular canal (AVC), and right atrium (RA). To examine the role of left-right signalling in the acquisition of left and right chamber identity, we have investigated MLC3F transgene expression in iv mutant mice. iv/iv mice exhibit randomised direction of heart looping and an elevated frequency of associated laterality defects, including atrial isomerism. At fetal stages, 3F-nlacZ-2E transgene expression remains confined to the morphological LV, AVC, and RA in L-loop hearts, although these appear on the opposite side of the body. In cases of morphologically distinguishable right atrial appendage isomerism, both atrial appendages show strong transgene expression. Conversely, specimens with morphological left atrial appendage isomerism show only weak expression in both atrial appendages. The earliest left-right atrial differences in the expression of the 3F-nlacZ-2E transgene are observed at E8.5. DiI labelling experiments confirmed that transcriptional regionalisation of the 3F-nlacZ-2E transgene at this stage reflects future atrial chamber identity. In some iv/iv embryos at E8.5, the asymmetry of 3F-nlacZ-2E expression was lost, suggesting atrial isomerism at the transcriptional level prior to chamber formation. These data suggest that molecular specification of left and right atrial but not ventricular chambers is dependent on left-right axial cues.Keywords
This publication has 51 references indexed in Scilit:
- Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left–right asymmetryMechanisms of Development, 2000
- Regulation of Chamber-Specific Gene Expression in the Developing Heart by Irx4Science, 1999
- Dynamic Left/Right Regionalisation of Endogenous Myosin Light Chain 3F Transcripts in the Developing Mouse HeartJournal of Molecular and Cellular Cardiology, 1998
- The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse.Genes & Development, 1997
- Relationship between asymmetric nodal expression and the direction of embryonic turningNature, 1996
- Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice.The Journal of cell biology, 1995
- Molecular anatomy of the developing heartTrends in Cardiovascular Medicine, 1994
- In situ analysis of the cardiac muscle gene program during embryogenesisTrends in Cardiovascular Medicine, 1994
- Development of the Outflow TractAnnals of the New York Academy of Sciences, 1990