Abstract
Several examples of incipient blow-off phenomena described by the compressible similar laminar boundary-layer equations are considered. An asymptotic technique based on the limit of small wall shear, and the use of a novel form of Prandtl's transposition theorem, leads to a complete analytical description of the blow-off behaviour. Of particular interest are the results for overall boundarylayer thickness, which imply that, for a given large Reynolds number, classical theory fails for a sufficiently small wall shear. A derivation of a new distinguished limit of the Navier–Stokes equations, the use of which will lead to uniformly valid solutions to blow-off type problems for Re → ∞, is included. A solution for uniform flow past a flat plate with classical similarity type injection, based on the new limit, is presented. It is shown that interaction of the injectant layers and the external flow results in a favourable pressure gradient, which precludes the classical blow-off catastrophy.

This publication has 8 references indexed in Scilit: