Autoxidation of soluble trypsin-cleaved microsomal ferrocytochrome b5 and formation of superoxide radicals
- 1 July 1976
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 157 (1) , 237-246
- https://doi.org/10.1042/bj1570237
Abstract
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 × 10(−3) +/− 0.19 × 10(−3) S-1 (mean +/− S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 × 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 × 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.This publication has 40 references indexed in Scilit:
- Role of superoxide radical in the autoxidation of cytochrome cBiochemistry, 1975
- Binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5Biochemistry, 1975
- The generation of superoxide anion in the reaction of tetrahydropteridines with molecular oxygenArchives of Biochemistry and Biophysics, 1975
- Cytochrome b5 from microsomal membranes of equine, bovine, and porcine livers. Isolation and properties of preparations containing the membranous segmentBiochemistry, 1974
- Elucidation of the mode of binding of oxygen to iron in oxyhemoglobin by infrared spectroscopyBiochemical and Biophysical Research Communications, 1973
- Evidence for superoxide generation by NADPH-cytochrome C reductase of rat liver microsomesBiochemical and Biophysical Research Communications, 1972
- Three-dimensional fourier synthesis of calf liver cytochrome b5 at 2.8 Å resolutionJournal of Molecular Biology, 1972
- Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactionsArchives of Biochemistry and Biophysics, 1971
- Catalysis of Methaemoglobin Reduction by Erythrocyte Cytochrome b5 and Cytochrome b5 ReductaseNature New Biology, 1971
- Nature of the Iron–Oxygen Bond in OxyhæmoglobinNature, 1964